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Abstract. In this paper, we aim at improving the accuracy of a Vlasov-Poisson solver using a 2D
Particle-In-Cell (PIC) scheme, by denoising its charge density field. To this end, we have used an
improvement of Donoho and Johnstone’s wavelet denoising technique. To some extent, our work is
a continuation of that performed by Chehab et al. [6]. Indeed, they made such a study in the one
dimensional case and validated their analysis by considering the simulation of the Landau damping
phenomenon. They concluded on the efficiency of the method in reducing the number of particles.
However, our approach is quite different, since we do not use wavelets to directly interpolate the
charge density, but we smooth the density field calculated by the PIC code. This is carried out via an
iterative wavelet denoising technique introduced by Azzalini et al. [2]. Our work consists in studying
the application of the method as a post-processing tool, in view of a future embedding into the PIC
code. The results are the following: first, we showed that the hypotheses underlying the application of
this method are valid. Secondly, we can infer from this study that it is possible to significantly reduce
the amount of data needed for a simulation.

Résumé. L’objectif de ces travaux est d’accrôıtre la précision d’un solveur Vlasov-Poisson basé sur
un schéma de type Particle-In-Cell (PIC). Pour ce faire, à l’instar de Chehab et coll. [6], nous avons
choisi d’utiliser des techniques d’analyse multirésolution par ondelettes pour débruiter la densité de
charge. Cependant, à la différence de ces auteurs, nous effectuons un post-traitement de la densité de
charge en appliquant une technique itérative mise au point par Azzalini et coll. [2]. Cette étude est un
préalable à l’implémentation d’un algorithme de débruitage dynamique du code PIC. Les expériences
numériques menée sur le cas-test de l’amortissement Landau nous ont permi de valider les hypothèses
sous-jacentes et portent à croire qu’il est possible de réduire de manière significative le nombre de
particules nécessaires pour une précision donnée.
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Introduction

We shall first recall the physical background of the problem at hand, as well as its mathematical modeling.
Given the main purpose of this report, we will only point out the aspects which are useful to seize the core of
the matter discussed in this paper. For a thorough insight into it, one could refer to e.g.: [5, 16, 17, 20] and the
bibliographies therein. Though notations will be introduced as we encounter new expressions, it is convenient
to note that from now on, all magnitudes denoted with a subscript e, i, or M , will respectively refer to those
relative to electronic, ionic and model magnitudes.

As far as we are concerned, we will consider the kinetic model of plasmas of charged particles in which the
collisions between particles are neglected. Moreover, due to the fact that we consider a non relativistic plasma
in a quasi-stationary regime we will neglect the magnetic field. Thus the Vlasov-Poisson equation for a single
particle species of charge q and mass m reads as follows:

∂f

∂t
+ v · ∇xf − q · (E · ∇p)f = 0, (x, v) ∈ R

d × R
d, (0.1)

where f(x, p, t) is the particle the distribution function with respect to position x, momentum p = mv and
time t. E is the electrostatic field. This equation models the invariance of the distribution function f along
the trajectories of the particles moving through the electrostatic field. The self-consistent field produced by the
charge of particles is:

Eself (x, t) = −∇xφself (x, t) with
{ −Δxφself = ρ(x, t)

ρ(x, t) = q
∫
f(x, p, t) dp (0.2)

In order to confine the particles in a bounded domain, we consider the classical case of an additional external
potential φext(x), which can be generated e.g. by a constant background of ions such that:

E(x, t) = Eself + Eext ≡ −(∇xφself + ∇xφext) (0.3)

To close the systems to be dealt with, we shall also fix an initial distribution function, via:

f(x, p, 0) = f0(x, p) (0.4)

Particle simulations [5,17] try to mimic this behavior at best. In this study, we use Particle-In-Cell (PIC) meth-
ods. PIC methods consist in modeling the medium as a finite set of individual elements (particles) interacting
with one another. However, if we also assume (see [5]) that the Debye length is invariant, that is: λD,M = λD,
then the model and real plasma temperatures will be different: Te,M = αTe, though the thermal velocities
remain the same:

vT,M =
(
Te,M

m

)1/2

= vT (0.5)

Consequently, the mean free path in a PIC plasma is much smaller than that of a real plasma. As a consequence,
the level of shot noise is much higher in the model plasma. A means of reducing this effect could consist in
increasing the number of particles per cell in the Eulerian mesh. However, it proves to be highly computationally
expensive.

Thus in this paper, we try to control the noise intrinsically generated by the model. More precisely, we aim
at enhancing accuracy, meanwhile significantly reducing the number of particles per cell. That is why we used
the optimal compression abilities of wavelets [10–12,21], in order to have such an adaptive code. To meet these
requirements, we passively denoised the PIC code via an ad-hoc postprocessing tool. This is a preliminary step
before a future embedding of the procedure into the PIC code.

In what follows, we will first explain the numerical techniques used to solve the Cauchy problem formed by
equations 0.1 to 0.4. Then in section 2, we will present the methods used for denoising. Finally, sections 3
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and 4 are respectively devoted to the presentation and discussion of the application of these techniques to the
classical Landau damping.

1. Plasma modeling via Particle–In–Cell methods

Now, we focus on the numerical schemes used to model the aforementioned physical problem. For a compre-
hensive presentation, the reader may refer to [3].

First and foremost, the initial distribution function f0
N (x, p), of a species is approximated via a linear com-

bination of N Dirac mass tensor products associated to macro-particles with initial states (x0
k, p

0
k) in phase

space:

f0
N (x, p) =

N∑
k=1

wkδ(x− x0
k)δ(p− p0

k) (1.6)

Besides, we draw the reader’s attention to the fact that the choice of plasma particle initial distribution in
phase space coordinates is of great importance in discrete models, since it affects the possibility of an adequate
investigation of the physical processes considered. Here, we use a Monte Carlo method called ”quietstart” (see
e.g. [17] for more details on statistical PIC methods). Then, each time step of the simulation is split into two
phases:

During the first stage , the interactions or the result of the joint effect of particles with fixed state are
calculated. This is done by solving the Poisson equation 0.2. To solve the Poisson equation, we use the Fourier
transform method. For the Vlasov equation, we solve it by considering its characteristic curves:

⎧⎨
⎩

dX(t)
dt = V (t)

dV (t)
dt = q

mE(X(t), t)
(1.7)

This is the most difficult task, since we have to deal with a nonlinear coupling. The electric field known at the
nodes of the Eulerian grid are interpolated to the positions (in phase space) of the particles. To interpolate this
magnitude, we use shape functions {Si} associated to the Eulerian nodes {xi}. If we denote by Vi the volume
of the cell associated to node xi, then we shall impose∑
ViSi(x) = 1 ∀x ∈ R

2 to ensure charge conservation. Concerning the spline functions, we recall that a spline
of order m can be obtained from the 0–order spline 1|[−1/2,1/2] via m convolutions of the latter by itself. The
electric field is interpolated as being:

E(xk(t)) = Vk

∑
i

E(xi, t)Si(xk(t)) (1.8)

During the second stage, by using a leapfrog scheme, we can advance particles in two steps according to the
Newton law for momentum: ⎧⎪⎨

⎪⎩
v

n+1/2
k −v

n−1/2
k

Δt = q
mE

n
k

xn+1
k −xn

k

Δt = v
n+1/2
k

(1.9)

Therefore, we have to calculate the new charge density {ρh(xi, t)} at the nodes of the Eulerian grid. This is
the second interpolation and is carried out by using the same shape functions as above, in order to avoid the
apparition of self-forces [18]:

ρN (x, t) = q
∫

R2 fN (x, p, t) dp
= q

∑N
k=1 wkδ(x− xk(t))

ρh(xi, t) =
∫

R2 ρN (x, t)Si(x) dx
= q

∑N
k=1 wkSi(xk(t))

(1.10)
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Finally, knowing the charge density, we can compute the electric field for the next time step. Let us recall the
fact that all the difficulty lies in the interpolation between Lagrangian and Eulerian meshes. Indeed, it may lead
to charge non conservation. To solve this problem, several solutions have been suggested, such as constraints
via Lagrange multipliers (see [3]). However, for the general Vlasov-Maxwell equations, methods calculating the
current such that charge conservation is satisfied are noisier. To reduce numerical noise, one can use higher order
shape forms. In the next section, we will introduce another technique to reduce that noise: wavelet filtering.

2. Wavelet denoising of a 2D PIC code: technical aspects

2.1. Basics on wavelet theory

In what follows, we will recall some basic assumptions on wavelets, so that the paper is self-contained.
Besides, we will only consider the case of discrete wavelet transforms. For further readings, we refer to [7,9,23].

In a nutshell, the wavelet transform decomposes the original data into a coarse approximation and a sequence
of finer and finer details, keeping the size of the data constant. In this respect the wavelet transform has adaptive
time/space frequency resolution. Moreover, it is also faster 1 than the Fast Fourier Transform. The framework
of this approach is laid on a special construction of orthonormal bases of Lp(R) with 1 < p <∞ generally taken
to be equal to 2. Such a basis is obtained thanks to a couple (ϕ , ψ) of functions respectively called the scaling
and the wavelet function. These bases are defined by an iterative algorithm of dilatation and translation of the
functions ϕ and ψ. Such a procedure has led to the concept called multiresolution analysis (MRA). MRA gives
rise to the multiscale local analysis of the signal and fast numerical algorithms. To give more details about this
procedure, let us first recall the following definitions:

Definition 2.1. Riesz2 basis of a Hilbert space: Let (uk)k∈Z be a sequence of a Hilbert space. It is then called
a Riesz basis, if there exists two strictly positive constants A and B such that, for any finite sequence (xk)k∈I⊂Z

we have:
A ‖x‖2 ≤ ‖(ukxk)k∈Z‖2 ≤ B ‖x‖2 (2.11)

Definition 2.2. Multiresolution analysis of R: it consists of a function ϕ ∈ L2(R) of unit norm and an increas-
ing sequence {Vj}j∈Z

of closed linear subspaces of L2(R) defined by: Vj = span
({ϕj,k ≡ 2j/2ϕ(2j · −k)}k∈Z

)
,

with the following properties:
(1) The family (ϕ0,k)k∈Z is a Riesz basis
(2)

⋂
j∈Z

Vj = {0}
(3)

⋃
j∈Z

Vj is dense in L2(R)
(4) (∀j ∈ Z)(Vj ⊂ Vj+1)

We will also consider the following orthogonality hypothesis:
(5) (∀j, k, l ∈ Z)(〈ϕj,k, ϕj,l〉 = δk,l)

Remark 2.3. From the definition of a Riesz basis, we may infer from the first and the fourth statements of
this definition, that there exists a sequence – called the low-pass filter – (hk)k∈I⊂Z of finite3 support, such that:

ϕ(·) =
√

2
∑
k∈Z

hkϕ(2 · −k) (2.12)

This equation is called refinement equation.
To construct orthogonal wavelets, let W0 be the orthogonal complement of V0 in V1, that is: V1 = V0 ⊕W0.
Then there exists a function, called the mother of wavelets ψ such that (ψ0,k ≡ ψ( · − k))k∈Z is an orthonormal

1O(N logN) versus O(N), N being a characteristic size of the system
2So far, the most general context for wavelet design lies on the notion of frames, but for the sake of concision and because it is

sufficient, we will only refer to Riesz bases.
3In the case of a compactly supported ϕ function
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basis of W0. Accordingly, (ψj,k ≡ 2j/2ψ(2j · −k))j,k∈Z is an orthonormal basis of of Wj , where Vj+1 = Vj ⊕Wj .
Similarly to the case of ϕ, from ψ ∈W0 ⊂ V1, we have another filter – the high-pass filter – (gk)k∈Z such that:

ψ(·) =
√

2
∑
k∈Z

gkϕ(2 · −k) (2.13)

If the low-pass filter h has D non-vanishing coefficients, then a permissible choice for g is : (∀k ∈ Z)(gk =
(−1)khD−k−1). Given this setting, we can decompose any function of L2(R) via its projections on these spaces.
Let Pj and Qj be respectively the orthogonal projections on spaces Vj and Wj . Then we have:

(∀f ∈ L2(R))(Pj+1f = Pjf +Qjf) (2.14)

With:
{

Pjf =
∑

k∈Z
〈f, ϕj,k〉ϕj,k

Qjf =
∑

k∈Z
〈f, ψj,k〉ψj,k

(2.15)

Consequently, we have these two decompositions of L2(R):

L2(R) = ⊕jWj = Vj0 ⊕⊕j≥j0Wj (2.16)

Then, the means to apply a discrete wavelet transform will only consist in performing a change of basis trans-
formation between the bases of Vj+1 and Vj ⊕Wj . By using respectively 2.12 and 2.13, in the expressions of
ϕj,k and ψj,k, we are led to: {

ϕj,k =
∑D+2k−1

l=2k hl−2kϕj+1,l

ψj,k =
∑D+2k−1

l=2k gl−2kψj+1,l

(2.17)

From which we deduce the following decomposition algorithm connecting coefficients of successive approxima-
tions:

(∀f ∈ L2(R))

{
cj,k ≡ 〈f, ϕj,k〉 =

∑D+2k−1
l=2k hl−2kcj+1,l

dj,k ≡ 〈f, ψj,k〉 =
∑D+2k−1

l=2k gl−2kdj+1,l

(2.18)

Finally, thanks to 2.17, 2.14 and the orthogonality property, we obtain the reconstruction formula:

cj+1,k =
D−1∑
l=0

hk−2lcj,l +
D−1∑
l=0

gk−2ldj,l (2.19)

Last but not least, for practical reasons, one has to consider a finite subset of integers for the scale index j. So,
let Jc < Jf be the chosen coarsest and finest resolution levels, the applying 2.18 recursively yields:

VJf
= VJc ⊕Jf−1

j=Jc
Wj (2.20)

Thus, we have:

f ≈
D− 1∑
k=0

〈
f, ϕJf ,k

〉
ϕJf ,k =

D− 1∑
k=0

〈f, ϕJc,k〉ϕJc,k +
Jf− 1∑
j=Jc

D− 1∑
k=0

〈f, ψj,k〉ψj,k (2.21)

Remark 2.4. A means to make a multidimensional wavelet analysis of data consists in building tensor product
spaces of the spaces {Vj}j∈Z

. In dimension two, we have:

∀j ∈ Z, Vj+1 = Vj+1 ⊗ Vj+1 (2.22)
= (Vj ⊗ Vj) ⊕ (Wj ⊗ Vj) ⊕ (Vj ⊗Wj) ⊕ (Wj ⊗Wj) (2.23)

As a consequence, we need one scaling function basis (ϕj,k1 ⊗ϕj,k2)j,k1,k2∈Z and three different wavelet functions
(ψj,k1 ⊗ ϕj,k2)j,k1,k2∈Z , (ϕj,k1 ⊗ ψj,k2)j,k1,k2∈Z and (ψj,k1 ⊗ ψj,k2)j,k1,k2∈Z to span each resolution set Vj . From
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a practical point of view, if we have to handle a square matrix, then we perform a 1D wavelet transform on
each column and line for a given resolution level.

At this stage, it necessary to recall that nowadays, there is a whole range of wavelet families available.
Hence the necessity of knowing how to choose those which would best meet the requirements of the application
at hands. These requirements may concern e.g. time/space localization, frequency localization, the speed of
the transform, or the compression/reconstruction abilities. In our case, the latter aspect is of first importance.
However, all these properties are interrelated. To obtain such and such property, one has to analyse the following
characteristics:

• The size of the support of the wavelet function.
• The symmetry of the wavelet function.
• The number of vanishing moments4.
• The regularity of the wavelet and scaling functions.
• The orthogonality of the basis.

For the problem at hands, we should bear in mind that compression is all the more better than the wavelets
have a large number of vanishing moments. However, due to the errors introduced by the thresholding process,
we will need wavelets with high regularity in order to enhance the quality of the reconstructed data. Moreover,
since we assume the additive noise to be well modeled by independent and identically distributed Gaussian vari-
ables, the transform should preserve the independence property. Yet, this can granted by the use of orthonormal
wavelets (see [23]).

Among the wavelets that meet the above stated requirements, are the classical Daubechies orthonormal
wavelets with compact support. Actually, it can be proved that a Daubechies wavelet with r vanishing moments
has μr (μ ≈ 0.2) continuous derivatives. However, we should be aware of the fact that as regularity increases, so
does the support. Now, a small support is needed for a faster transform, while it implies relatively few vanishing
moments and low regularity. This means that the requirements above cannot be satisfied equally well. Indeed,
the size of the support, the symmetry of the wavelet function affect time/space localization, while the number of
vanishing moments and the regularity affect the frequency localization. Good time/space localization requires
a small support and high symmetry, while good frequency localization requires many vanishing moments and
high regularity. A small support is also needed for a faster transform. However, a small support implies
relatively few vanishing moments and low regularity. In addition, orthogonality implies asymmetry, except for
the simplest wavelet (the Haar wavelets). (Bi-)orthogonality5 weakens the coupling between the properties of
the decomposition and reconstruction wavelets, and allows perfect symmetry. In order to fulfill the requirements
of the problem at hands we decided to choose a wavelet family called ’Coiflets’, which has the advantage that
both the scaling and the wavelet function have vanishing moments.

2.2. Wavelet denoising techniques

In this section, we shall detail the nonlinear wavelet denoising techniques that we used to denoise the charge
density field. Our purpose is to significantly reduce the number of particles needed to perform the simulation
described in section 2. Indeed, due to the numerical noise, so far good accuracy can be obtained only with
a large number of particles. To denoise our 2D PIC code, we use the most important abilities of wavelets:
multiresolution and compression. Actually, the wavelet transform cuts up the signal into different frequency
components and then enables us to study each component with a resolution matched to its scale. The first
application to denoising was developed by D. Donoho and I. Johnstone. For further readings, we refer to
[10–12, 21] for wavelet denoising theory, and [13–15, 24, 25, 27] for its application to the study of some physical
processes.

4A wavelet ψ has N vanishing moments when
∫∞
−∞ xkψ(x)dx = 0, for 0 ≤ k ≤ N − 1. Where x denotes time or space. In

particular, all ”normal” wavelets have zero mean (i.e. N ≥ 1), since under rather general assumptions, this is related to the
admissibility condition for the existence of the inverse transform.

5Biorthogonal wavelets use two wavelet bases both built according to the above mentioned MRA construction, except that the
fourth hypothesis (orthogonality between translates of a same scale level) is not required.
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Let us assume that we wish to estimate the signal s, which is corrupted with additive Gaussian white noise,
i.e. we observe:

f = s+ w (2.24)
Where w ∈ N (0, σ) is a Gaussian white noise with variance σ. Then, if we denote by š an estimator of s, we
define a risk associated to this estimation by the following:

Definition 2.5. Let κ be a convex even function, called the cost. Then the the risk R associated to this cost
is defined by:

R(š, s) = Es [κ (š(f) − s)] (2.25)

For a large class of cost functions, simply choosing the estimator š equal to the value f leads to minimizing the
risk operator:

R(f, s) = inf
š

sup
s
R(š, s) (2.26)

Whence the calling minimax, since we have the best estimation in the worse case. If we have to handle
an evolution problem, that is s varies with the time variable, then the problem at hands becomes trickier.
However, in this case, the knowledge of some a priori information about the regularity of s may enable us to
find its best estimator. Let E be a known regularity space to which s belongs. Then the estimator should be
the solution of:

inf
š

sup
‖s‖E≤C

R(š, s) (2.27)

Despite estimators have been found for several functional spaces, such an approach is limited at least due to
two obstacles. First, from a computational point of view, the convergence rate of those algorithms depends
on the functional space. Secondly, the unknown function may simultaneously belong to several functional
spaces, or worse: we often do not have any clue about its regularity (e.g.: a noisy image). It is in this context
that Donoho and Johnstone introduced new methods based on wavelet decomposition. Indeed, thanks to the
unconditionality6 property of wavelet bases, such methods allow us to have convergence rates of the same order
of magnitude on a whole set of functional spaces. The payback is then a not exactly – though near to – minimax
risk. The first method – called Wavelet shrinkage – introduced by these authors in [11] and consists in replacing
the wavelet coefficients {dj,k}j,k∈Z of the noisy function by:

sign(dj,k) inf(|dj,k| − ε, 0) (2.28)

Where the threshold ε is fixed with respect to the known or estimated variance of the noise. In the orignal
article of these authors, an optimal value of the threshold was proved to be equal to ε =

√
2σ logN , where

N corresponds to the number of grid points or the size of the sample. This value was calculated under the
assumption that the observations are independent identically distributed random variables with N (0, σ) density.
This method is as efficient as the minimax estimator in many functional spaces and minimizes the maximum
L2-risk – i.e.: κ ≡ ‖ · ‖2

2 – in a whole class of finite energy signals including Hölder and Besov spaces. In
addition, in the worse case, the risk estimation error is approximatively logN .

In this paper, we used an improvement of this method suggested by [2], in which the estimation of the
variance is made via an iterative algorithm performed on the threshold residuals. More precisely, the following
algorithm is applied:

(1) Initialisation
- Apply a fast wavelet transform to the initial data {si}1≤i≤N to obtain the wavelet coefficients
{ši}1≤i≤N .

- Compute the variance σ0 of these coefficients and set the initial threshold to be equal to t0 =√
2σ0 logN .

6An unconditional basis is such that the convergence of the partial sums obtained by decomposing a function on them do not
depend on the order of the terms of the series
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- Set the noise counter variable νNoise to be equal to N .
(2) Main loop

At each step i, repeat:
- Set ν′Noise = νNoise and set νNoise to be the number of coefficients such that their modulus is smaller

than ti.
- Compute the variance σi+1 from the wavelet coefficients inferior to ti and set the new threshold
ti+1 to the value

√
2σi+1 logN .

- Increment the counter i.
Until ν′Noise = νNoise.

(3) Final step
- Use the inverse fast wavelet transform to compute the denoised data from the coefficients such that

their absolute value is greater than the last threshold value.

3. Application to passive denoising of a PIC code: numerical results

3.1. The Landau damping case test

Here, we shall discuss the results obtained from these numerical experiments and sketch some perspectives
for future extensions of the method. The Landau damping test is known for its efficiency to assess the quality
of Vlasov–Poisson or Vlasov–Maxwell codes. For the sake of clarity, let us briefly recall the physical background
related to it.

In stable plasmas electrostatic waves are damped due to wave–particle interactions, and not to collisions.
This is the meaning of the Landau damping. Indeed, let ω denote frequency and k the wave vector. Then let us
consider particles with velocities just larger than the wave phase velocity u � ω/k. They can gain or lose energy
depending on the relative phase of the wave; but if they gain energy, their velocity increases and they go out of
the resonance: they can not exchange energy any more. If they lose energy, they slow down and stay longer in
the resonance. So overall, they transfer energy to the wave. The opposite holds for particles with velocities just
below the phase velocity u � ω/k. Those that gained energy from the wave remain in the resonance longer, and
the net effect is that they gain energy from the wave. The total energy balance is therefore given by the ratio
between how many particles gain energy from the wave (with u � ω/k and how many give energy to the wave
(u � ω/k). This balance can be deduced from the slope of the distribution function f0(u) around the resonance
u ≈ ω/k. This is the meaning of the formula:

γ ∝ df0
du

∣∣∣∣
u=ω/k

(3.29)

i.e. the damping is proportional to the slope of the equilibrium distribution function at the wave phase velocity
(the wave–particle resonance).

For our numerical experiments, we consider a configuration with periodic boundary conditions and the initial
distribution function is chosen so as to be a perturbed Maxwellian:

f0(x, v) =
n0√
2πvT

exp

(
−v

2
x + v2

y

2v2
T

)
(1 + α cos(kxx)) (3.30)

The phase space domain is denoted by Ω ≡ [0, Lx]× [0, Ly]×R
2. Besides, perturbation amplitude α, the thermal

velocity vT , as well as the x–component kx of the wave vector are constant. Consequently, this perturbation
of period Lx = 2π

kx
creates a perturbed electric field such that the norm of its kx-th mode decays with an

exponential rate according to the law:
E0 exp(γt) sin(kx − ωt), (3.31)
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where under the condition k2
xλ

2
D � 1, we have:

γ ≈ −
√
π

8
ωe

(kxλD)3
exp

(
− 1

2(kλD)2
− 3

2

)
(3.32)

ω ≈ ωe

√
1 + 3(kxλD)2 (3.33)

In order to diminish numerical roundoff errors caused by huge or tiny magnitudes, the PIC code used here was
implemented by considering dimensionless Vlasov–Poisson and Maxwell equations. To this end, we make the
following changes of variable in equations 0.1 to 0.4:{

t′ = t̄t, x′ = x̄x, v′ = v̄v, E′ = ĒE,
ρ′ = ρ̄ρ, q′ = qeq, m′ = mem,

(3.34)

where me = 9.109410−31kg is the electron mass, and variables with a prime symbol are those expressed in the
SI unit system. Those with a bar represent the new units. This leads us to the following dimensionless Vlasov
equation:

∂f

∂t
+
v̄t̄

x̄
v · ∇xf +

x̄t̄qω2
e

v̄m
E · ∇vf = 0 (3.35)

In order to fix the units of the variables, we state that:{
t̄ = ω−1

e , v̄ = vT = c/8, x̄ = v̄t̄
w̄ = f̄ x̄2v̄2 = n0x̄

2, ρ̄ = qen0, Ē = x̄ρ̄
ε0

(3.36)

Where c is the speed of light and w̄ is the new mass unit of macroparticles. In this new unit system, we have:{
v̄ = 3.7474107m/s, t̄ = 1.772710−2n

−1/2
0 s, x̄ = 6.6430104n

−1/2
0 m

Ē = 1.202010−2n
1/2
0 V/m, ρ̄ = 1.602110−19n0C/m

2, w̄ = 4.41291011n0

We carry out the subsequent numerical experiments with the following values for the constants:

α = 0.1, kx = 0.5, ωe = 1, λD = 1

In these conditions, the theoretical exponential decay rate of the the electrostatic field is predicted to be
γ ≈ −0.151 with an oscillation frequency of ω ≈ 1.323. As for the mesh grid, we used a uniform grid of
128 × 128 in (x, y)-coordinate plane. Finally, we consider this configuration with different particle densities:
from 50 to 2000 particles per cell.

3.2. Numerical results of the passive denoising

In this part of the numerical experiment, we simulated the aforementioned case test with different numbers
of particles per cell (nppc): from one to 2000. We use the Coiflet filters7, which yield wavelets (and scaling
functions) of length 12, which yield wavelets with 4 vanishing moments. Then, we used a postprocessing program
based on the algorithm described in section 3, to denoise the resulting fields.

To assess the time evolution of the noise, we studied the variation of some image quality parameters with
respect to the number of particles per cell. Namely, we observed the time trend of the compression rate (in %),
the signal to noise ratio SNR (in dB) and the variance ratio of the coherent and noisy solutions (in %). Let us
recall that in what is following, coherent part and denoised signal are taken for synonyms. The same applies
to incoherent part and noise component. A quantitative summary of the evolution of these features is provided
by table 1.

7Let us recall that we perform our wavelet transform until the resolution level 1.
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nppc Compression rate: 100NWCcoh

NWCtot
(%) SNR: 10 log( RMS

RMSinc
) (dB) 100RMScoh

RMStot
(%)

50 0.06 2.5 44.4
500 0.02 11.0 92.0
1000 0.15 14.8 96.7
1500 0.15 16.7 97.9
2000 0.18 18.1 98.4
Table 1. Summary of the compression rate and the SNR as a function of the nppc.
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Figure 1. Surface plots of the charge density fields for 2000 ppc. Noisy PIC solution (left),
denoised PIC solution (right)

Let us sum up the main deductions that can be drawn from the study of these data. We denote by NWC the
number of coefficients of the wavelet decomposition, and by RMS the standard deviation of these coefficients.
Subscripts ’coh’, ’inc’, and ’tot’ respectively refer to the coherent , the incoherent and the whole signal. As it
was announced in the previous sections, we observe that the incoherent part of the signal becomes all the more
negligible that the nppc increases (see also figures 3 and 4). As a consequence, a simulation with a high enough
nppc may be taken as a reference solution for the study of accuracy features. Another information given by
this table, is that we need extremely few wavelet coefficients to reconstruct the solution (less than 0.2 %). It
indicates that the solution is highly regular. Finally, we see that the signal is highly blurred for low nppc, since
less than half of the total energy is considered as being coherent for 50 ppc.

Images on figure 1 are obtained with 2000 ppc and give us an insight of the exact solution. According to
table 1 and the comments we made upon it, it seems reasonable to take the case of 2000 ppc as a reference to
study the influence of the number of particles on the accuracy of the reconstruction. Thanks to the symmetry
of the problem (whence of the solution), we could use cuts made at the middle mesh node number 64. In a first
stage, we compared our reference solution with coherent solutions obtained with different nppc (see the curves
of figure 2). In the second stage, we compared all coherent solutions with their respective noisy counterparts.
The results are furnished by the curves of figures 3 and 4.

As we can see through figure 2, even for the lowest nppc (i.e. 1), the solution obtained is close to the
reference solution. On this figure, we can distinguish three groups of quasi superimposed curves: those with 1
to 10 ppc, those with 25 to 100 ppc, and those with 250 to 2000 ppc. If we look at the number of coefficients
kept to reconstruct the signal, we effectively ascertain the fact that it may be responsible for this disjunction
into characteristic groups. Actually, the coherent part is reconstructed with 5 to 8 coefficients for the first
group, 8 to 11 for the second and 24 to 29 for the last. An other criterion justifying this splitting is the SNR
level, which goes from 0.07 to 0.55 for the first group, from 1.3 to 4.1 for the second and from 7.9 to 18.1 for the
last. The first group corresponds to the very low nppc (SNR < 1 and σ ≥ 0.09), while the two others show less
scattered (σ < 0.02) point sets. In addition, we can notice that the solution rapidly converges to the reference
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Figure 2. Comparison of the reference coherent PIC solution with those having less particles
per cell. Cuts of the charge density field for different nppc

solution as soon as we have 250 ppc. This gives us incentives for reducing the number of particles per cell while
enhancing accuracy.

Meanwhile, let us observe the curves of figures 3 and 4. They clearly give us two information. First, with the
help of the curves related to the convergence feature (see figure 2), these results demonstrate the high quality
of the reconstruction pattern chosen. Indeed, we tried such experiments with other (e.g. median filtering)
techniques and they did not prove such efficiency.

Finally, in order to assess the validity of the normality assumption made on the noise distribution, we used
Lilliefors’s non-parametric adjustment test (see [22]). This test is an adaption of the Kolmogorov–Smirnov
test to the case where the variance and the mean of the data are unknown. It is based on the comparison
between the empirical and theoretical distribution functions of the sample. It can be proved that this test
is statistically more powerful than Pearson’s χ2–test and that it is more reliable than a simple kurtosis and
skewness evaluation. Let us briefly recall its main principles:

- We standardize the data (si)1≤i≤N according to the transformation: si �→ zi = si−m
s . Where m =

1
N

∑
i si and s = 1

N−1

[∑
i s

2
i − 1

N (
∑

i si)
2
]

are the empirical mean and unbiased RMS of the sample.
- We compute the cumulative distribution function C of the sample, via:
C(zi) =Number of values≤ziin the sample

N
.
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Figure 3. Comparison of the coherent PIC solutions with their noisy counterparts (from 1 to
250 ppc). Cuts of the charge density fields.

- In view of a bilateral test, we form the sequences (φ(zi) − C(zi)) and (φ(zi) − C(zi−1)) of differ-
ences between the empirical (C) and the theoretical (φ) cumulative distribution functions. The nor-
mal distribution with the estimated mean m and estimated variance σ is defined by the mapping
φ : z = s−m

σ �→ 1
2

(
1 + erf z√

2

)
.

- The Lilliefors parameter is equal to the maximum discrepancy in absolute value.

According to [22], the thresholds for rejecting the null hypothesis H0: ’the distribution is normal’ with signifi-
cance levels of 1% and 5% are respectively equal to 0.886√

N
and 1.031√

N
. Namely, above these critical values, we can

reject the null hypothesis with the corresponding significance level. Let us recall that the significance level of a
test is the maximum probability of accidentally rejecting a true null hypothesis (a decision known as a Type I
error). Table 2 gives the results of the test. Since N is always equal to 16384, the respective critical values are
equal to 0.0081 and 0.0069. In addition to the Lilliefors test, we assessed the skewness γ1 = m3

m
3/2
2

and kurtosis
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Figure 4. Comparison of the coherent PIC solutions with their noisy counterparts (from 500
to 2000 ppc. Cuts of the charge density fields.

γ2 = m4
m2

2
− 3 coefficients (with mk =

∑N
i=1

(si−m)k

N ). For a normal distribution, we should have on the average:
γ1 = 0 and γ2 = 0. According to the results recorded in table 2, the extracted noise can be considered as
being Gaussian for nppc > 50. In spite of the (slight) failure of the Lilliefors test for the 2000 ppc case, we can
ascertain the normality hypothesis. Indeed, figure 5 and 6 enable us to visually confirm the Gaussian trend of
the distribution. For denoising methods related to non necessarily Gaussian noise, the reader may refer to e.g.
to [1] and the bibliography therein.

nppc Lilliesfors’ parameter Skewness coefficient Kurtosis coefficient
1 0.0592 0.8328 0.7759
2 0.0391 0.5292 0.2537
5 0.0265 0.3201 0.0492
10 0.0167 0.2397 0.1008
25 0.0093 0.1398 0.0613
50 0.0074 0.1076 0.0294
100 0.0072 0.0680 0.0027
250 0.0047 0.0240 -0.0061
500 0.0056 0.0322 -0.0329
1000 0.0045 0.0362 -0.0372
1500 0.0046 0.0320 -0.0548
2000 0.0086 0.0363 -0.1165

Table 2. Results of the normality tests: evolution of Lilliefors’ parameter, along with the
skewness and kurtosis coefficients for different nppc.
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Figure 5. Noise distribution for different nppc using histograms with 100 bins. Note that the
distributions have been centered and normalized by their variance, i.e. zi = si−m

σ

4. Conclusions and perspectives

To conclude, this approach seems to be a promising step towards a significant reduction of the number of
particles per cell. Moreover, it should allow us to enhance the accuracy of the scheme for a given number of
particles per cell. Concerning ongoing and future work, several points should be pondered over. Actually, as
for the embedding of this procedure into the PIC code, there still remains an important step before it could
be achieved. Indeed, the denoising process may lead to large overshooting oscillations in the vicinity of some
points. This naturally reminds us of the classical Gibbs phenomenon (see [19]) encountered in the case of
Fourier series. Such problems occur when the convergence is not uniform over the interval considered. In the
case of wavelets, a similar problem may happen, and it can be proved (cf. [26]) that such a phenomenon occurs
for all known wavelet constructions, except for the Haar wavelets. Actually, due to the thresholding procedure,
the reconstructed density has local discontinuities. This may be a consequence of the fact that the threshold
is no longer adapted for such nppc. Namely, if we pay attention to the evolution of the threshold value with
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Figure 6. Noise distribution for different nppc using histograms with 100 bins. Note that the
distributions have been centered and normalized by their variance, i.e. zi = si−m

σ

respect to the nppc, we observe that it is all the more large, that the nppc is low. As a consequence, we
observe strong oscillations in the vicinity of these loci . By incautiously injecting such non physical values
in the iterative process, we are led to false solutions. A means to suppress this shortcoming could consist in
the use of the so-called translation-invariant wavelets (see [4, 8, 26]). This approach consists in averaging the
transform in the vicinity of these regions. After using this method, we observed that the oscillations diminish in
amplitude. However, a thorougher study of this stage remains to be achieved both on theoretical and numerical
implementation aspects. Last but not least, rigorous comparisons should be made with other types of solvers,
in order to validate the quality of such improvements.
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material for the project, and all the participants of the CEMRACS 2005 for their advice, help, and fruitful discussion.
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[3] R. Barthelmé, Le problème de conservation de la charge dans le couplage des équations de Vlasov et de Maxwell, Ph.D. thesis,
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